SUPPLEMENTAL MATERIALS

ASCE Journal of Water Resources Planning and Management

How to Model an Intermittent Water Supply: Comparing Modeling Choices and Their Impact on Inequality

Omar Abdelazeem and David D. J. Meyer

DOI: 10.1061/JWRMD5.WRENG-6090

© ASCE 2023

www.ascelibrary.org

Supplemental Text

Text S1:	Extended	methods for	modelling pre	ssure depender	nce in EPANET	2

List of Equations

Eq. S1. Flow through an emitter in EPANET	2
Eq. S2. Emitter coefficient for head-flow relationship in FCV-EM	2
Eq. S3. Minor Headloss Equation in EPANET	2
Eq. S4. Minor Loss coefficient to match the head-flow relationship in FCV-Res and PSV-	
Tank	2
Eq. S5. Pipe length to match major losses to the head-flow relationship in CV-Tank and CV-	
Res	3
Eq. S6. Tank Diameter for CV-Tank and PSV-tank	3

Supplemental Tables

Table S1. Classification of 30 studies that proposed or employed hydraulic modelling	
methods for IWS networks	4
Table S2. Description of Compared Pressurized IWS (EPANET) methods	6
Table S3. Detailed implementation of flow-restricted and unrestricted methods as used in	
this study	7
Table S4. Detailed implementation of volume-restricted methods as used in this study	7
Table S5. Execution time IWS simulations using all 6 EPANET-based methods in	
milliseconds per run (Average of 1.000 timed runs)	8

Supplemental Figures

Fig. S2. Network 2 Layout (Bragalli et al. 2012)
Fig. S3. Network 3 Layout (Bragalli et al. 2012)
Fig. S4. The mean demand Satisfaction Ratio (delivered/desired volume) in Network 2 huring a supply of a) 4 hours/day and b) 12 hours/day. Corresponding figure: Fig. 2
 huring a supply of a) 4 hours/day and b) 12 hours/day. Corresponding figure: Fig. 2
Fig. S5. The mean demand Satisfaction Ratio (delivered/desired volume) in Network 3 during a supply of a) 4 hours/day and b) 12 hours/day. Corresponding figure: Fig. 2
huring a supply of a) 4 hours/day and b) 12 hours/day. Corresponding figure: Fig. 2
Fig. S6. Mean Nodal Pressure (Solid) and its 10 th to 90 th Percentile range (Shaded) for an inrestricted, a volume-restricted and a flow-restricted method
Fig. S7. Mean satisfaction ratio (Solid line) and satisfaction ratio ranging from the 10 th to 90 th bercentile consumers (shaded) in Network 1. Corresponding figure: Fig. 3
Fig. S7. Mean satisfaction ratio (Solid line) and satisfaction ratio ranging from the 10 th to 90 th percentile consumers (shaded) in Network 1. Corresponding figure: Fig. 3
bercentile consumers (shaded) in Network 1. Corresponding figure: Fig. 3
Fig. S8 Mean satisfaction ratio (Solid line) and satisfaction ratio ranging from the 10th to
1g. So. Wean satisfaction ratio (Sond file) and satisfaction ratio ranging from the roth to
90th percentile consumers (shaded) in Network 2. Corresponding figure: Fig. 3
Fig. S9. Predicted mean satisfaction ratio and its range (10 th -90 th) in Network 1 Filling vs.
Non-Filling Corresponding figure: Fig. 5
Non-Filling Corresponding figure: Fig. 5

Text S1. Extended methods for modelling pressure dependence in EPANET

The pressure dependence of demand in many IWS modelling methods is enforced with artificial elements. A given method may use an emitter, a minor loss or a major loss (e.g., via pipe length or diameter) to achieve the desired flow resistance.

Emitter sizing

Flow through an emitter in EPANET flows according to:

Eq. S1. Flow through an emitter in EPANET

 $Q = C_E H^{\alpha}$

Where Q is the flow out of the emitter (to the consumer), C_E is the emitter's coefficient and α is the emitter's exponent. We assumed, following (Abdy Sayyed et al. 2015) that $\alpha = 0.5$.

Eq. S2. Emitter coefficient for head-flow relationship in FCV-EM

$$C_{\rm E} = \frac{Q_{\rm des}}{(H_{\rm des} - H_{min})^{\alpha}}$$

Minor loss sizing

The minor (local) head losses in EPANET behave according to:

Eq. S3. Minor Headloss Equation in EPANET

$$h_{\rm minor} = K_{\rm minor} \frac{8Q^2}{g\pi^2 D^4}$$

Where h_{minor} is the minor head loss and K_{minor} is the minor loss coefficient. Accordingly, we can mimic the desired head-flow relationship by selecting:

Eq. S4. Minor Loss coefficient to match the head-flow relationship in FCV-Res and PSV-Tank

$$K_{minor} = (H_{des} - H_{min}) \frac{g\pi^2 D^4}{8Q_{des}^2}$$

Where K_{minor} is the pipe's minor loss coefficient, D is the artificial pipe's diameter (selected arbitrarily as 350 mm, following Sivakumar et al. (2020), and Q_{des} is the consumer's desired flow rate. Only one pipe of the artificial element arrangement is assigned a minor loss coefficient.(Gorev and Kodzhespirova 2013)

Length sizing

The Hazen-Williams equation can be rearranged to solve for the desired major loss associated with the pipe's length (or diameter). We implemented length-based major losses according to:

Eq. S5. Pipe length to match major losses to the head-flow relationship in CV-Tank and CV-Res

$$L = (H_{des} - H_{min}) \frac{C^{1.852} D^{4.87}}{10.67 Q_{des}^{1.852}}$$

Where L is the artificial pipe's length, C is the Hazen-Williams Coefficient (Selected as 130 in this paper), and D is the artificial pipe's diameter (selected as 350 mm for all consumers).

Tank Sizing

In addition to pressure dependent flows achieved with the above loss elements, volume limited methods employed a tank with diameter:

Eq. S6. Tank Diameter for CV-Tank and PSV-tank

$$D_{tank} = \sqrt{\frac{4V_{des}}{\pi h_{tank}}}$$

Where D_{tank} is the tank's diameter, and h_{tank} is the tank's maximum useable height (set at 1 metre in this paper).

DI - 46	Consumer Withdrawal	<u> </u>	IW			
Platform	Model	Study		Pressurized	Draining	INULES
		(Batish 2003)				
	Unrestricted	(Ang and Jowitt 2006)		\checkmark		
		(Mohapatra et al. 2014)				
		(Batterman and Macke 2001)				
		(Ingeduld et al. 2006)				
		(Fontanazza et al. 2007)				
	Volume-Restricted	(Cabrera-Bejar and Tzatchkov 2009)		\checkmark		
		(Ameyaw et al. 2013)		ļ		
EPANET		(Taylor et al. 2019)				
		(Sivakumar et al. 2020)				
		(Jinesh Babu and Mohan 2012)				
	Flow-Restricted	(Siew and Tanyimboh 2012)				
		(Gorev and Kodzhespirova 2013)				
		(Sivakumar and Prasad 2014, 2015)		1		1
		(Abdy Sayyed et al. 2015)		•		1
		(Mahmoud et al. 2017)				
		(Paez et al. 2018)				
		(Neelakantan and Rohini 2021)				
	Flow- & Volume-Restricted	(Suribabu et al. 2022)		\checkmark		
		(Segura 2006)				
		(Cabrera-Bejar and Tzatchkov 2009)	\checkmark	\checkmark		
EPA-SWMM	Volume-Restricted	(Shrestha and Buchberger 2012)				
		(Campisano et al. 2019a)				
		(Gullotta et al. 2021)	•	•	•	

Table S1. Classification of 30 studies that proposed or employed hydraulic modelling methods for IWS networks

Abdelazeem, August 23, 2023

EPA-SWMM	Flow-Restricted	(Kabaasha 2012) (Dubasik 2017) (Campisano et al. 2019b)	~	~		
Custom	Value a Destricted	(De Marchis et al. 2010)	✓	✓		2
	volume-Restricted	(Mohan and Abhijith 2020)	✓	✓	✓	2, 3
	None	(Lieb et al. 2016)	✓			2

1 Proposed for Pressure-Deficient Continuous Water Supply networks but has been repurposed for IWS 2 Source code not available

3 Issues with mass conservation

Consumer Withdrawal Model	Method	Based on	Artificial Elements	Pressure-dependence
	EPANET-PDA	Native to EPANET	None	-H _{min} , H _{des} and 1/n input natively
Flow-Restricted	FCV-Res	(Gorev and Kodzhespirova 2013)	-Flow Control Valve (FCV) -Artificial Reservoir	-Reservoir raised by <i>H_{min}</i> -FCV set to <i>Q_{des}</i> - <i>H_{des} and n</i> set in Local Loss Coefficient
	FCV-EM	(Abdy Sayyed et al. 2015)	-Flow Control Valve (FCV) -Node with Emitter	-Emitter raised by H_{min} -FCV set to Q_{des} -emitter exponent = $1/n$ - H_{des} set in emitter coefficient
	CV-Tank (Batterman and Macke 2001) (Taylor et al. 2019)		-Pipe with Check Valve (CV) -Tank of Volume V _{des}	-Tank raised by <i>H_{min}</i> -Distributed Losses adjusted to simulate <i>H_{des}</i> , <i>Q_{des}</i> and <i>n</i>
Volume-Restricted	PSV-Tank	(Sivakumar et al. 2020)	-Pressures-Sustaining Valve (PSV) -2 Connecting Nodes (Dummy) -2 Pipes with CV -Tank of Volume V _{des}	-PSV set to H_{min} - H_{des} , Q_{des} and n set in Local Loss Coefficient
Unrestricted	CV-Res(Mohapatra et al. 2014)		-Pipe with CV -Artificial Reservoir	-Reservoir raised by H_{min} -Distributed Losses adjusted to simulate H_{des} , Q_{des} and n

Table S2. Description of Compared Pressurized IWS (EPANET) methods

Detailed notes on how to size components for a given pressure-dependence, see section Text S1.

Mathad		Art	ificial Pi	ре		Artificial Node	Artificial Valve		Artificial Reservoir	Emitter	
Ivietnou	D (mm)	L (m)	HW Coeff.	K _{minor}	Status	Elevation	Туре	Setting	Elevation	Elevation	Coefficient
EPANET- PDA	-	-	-	-	-	-	-	-	-	-	-
FCV-Res	350	0.1	130	Eq. S4	CV	Z _{orig}	FCV	Q _{des}	z _{orig} + H _{min}	-	-
FCV-EM	350	0.1	130	0	CV	Z _{orig}	FCV	Q _{des}	-	$z_{orig} + H_{min}$	Eq. S2
CV-Res	50	Eq. S5	130	0	CV	Z _{orig}	-	-	z _{orig} + H _{min}		

Table S3. Detailed implementation of flow-restricted and unrestricted methods as used in this study

Where z_{orig} is the elevation of the original demand node and all else defined as before.

Table S4. Detailed implementation of volume-restricted methods as used in this study

Method		А	Pipe(s)		Artificial Node(s)	Artific	ial Valve	Artificial Tank			
	D (mm)	L (m)	HW Coeff.	K _{minor}	Status	Elevation	Туре	Setting	Elevation	Diameter	Height (m)
CV-Tank	50	Eq. S5	130	0	CV	-	-	-	$z_{orig} + H_{min}$	Eq. S6	1
PSV-Tank ¹	350	0.1	130	Eq. S4 & 0	CV	Zorig	PSV	H _{min}	$z_{orig} - 1$	Eq. S6	1

¹ Where the two pipes differed, values are ordered upstream to downstream. One value means the same in both pipes.

Table S5. Execution time of IWS simulations using all 6 EPANET-based methods in milliseconds per run (Average of 1,000 timed runs). The similarity of run times between 4-hr and 12-hr simulations in some scenarios likely indicates the solvers use of more iterations to resolve the increased prevalence of pressure-dependent behaviour in the shorter, lower pressure simulations.

	Supply	F	low-Restric	ted	Volume-R	Unrestricted		
Network	Duration	FCV-	FCV-	EPANET-	CV Toml	PSV-	CV-Res	
	(hr)	EM	Res	PDA	CV-Tank	Tank		
1	4	4.18	3.91	2	3.29	5.44	2.76	
1	12	4.33	3.9	1.99	3.43	5.41	2.77	
2	4	6.75	6.13	2.62	4.98	8.58	4.05	
	12	6.44	6.13	2.67	4.99	8.54	4.1	
3	4	23.69	21.69	8.8	17.61	31.84	13.82	
	12	24.46	22.33	8.79	17.19	32.81	13.84	

Fig. S1. Network 1 Layout and elevations as proposed by (Campisano et al. 2019b).

Fig. S2. Network 2 Layout and elevations as proposed by (Bragalli et al. 2012).

Abdelazeem, August 23, 2023

Fig. S3. Network 3 Layout and elevations as proposed by (Bragalli et al. 2012).

Fig. S4. The mean demand Satisfaction Ratio (delivered/desired volume) in Network 1 during a supply of a) 4 hours/day and b) 12 hours/day when consumers are modelled using flowrestricted methods: EPANET's PDA (Blue), FCV-Res (Dashed Light Blue), and FCV-EM (Dotted Light Blue), volume-restricted methods: Simple Tank (Red) and PSV (Dotted Orange), and unrestricted methods: such as Res (Yellow). Corresponding figure: Fig. 1.

Fig. S5. The mean demand Satisfaction Ratio (delivered/desired volume) in Network 2 during a supply of a) 4 hours/day and b) 12 hours/day when consumers are modelled using flow-restricted methods: EPANET's PDA (Blue), FCV-Res (Dashed Light Blue), and FCV-EM (Dotted Light Blue), volume-restricted methods: Simple Tank (Red) and PSV (Dotted Orange), and unrestricted methods: such as Res (Yellow). Corresponding figure: Fig. 1.

Fig. S6. Mean Nodal Pressure (Solid) and its 10th to 90th Percentile range (Shaded) for an unrestricted, a volume-restricted and a flow-restricted method in Network 3.

Fig. S7. Mean satisfaction ratio (Solid line) and satisfaction ratio ranging from the 10th to 90th percentile consumers (shaded) in Network 1 for a Flow-Restricted (FR) and a Volume-Restricted method (VR) over a a) 4-hr supply duration and b) 12-hr supply duration. Corresponding figure: Fig. 3.

Fig. S8. Mean satisfaction ratio (Solid line) and satisfaction ratio ranging from the 10th to 90th percentile consumers (shaded) in Network 2 for a Flow-Restricted (FR) and a Volume-Restricted method (VR) over a a) 4-hr supply duration and b) 12-hr supply duration. Corresponding figure: Fig. 3.

Fig. S9. Predicted mean satisfaction ratio and its range (10th-90th) in Network 1 with a flowrestricted method ignoring filling (FR) and including filling (SWMM-FR, and a volumerestricted method ignoring filling (VR) and including filling (SWMM-VR) under a 4 hours/day supply (a and c) a 12 hours/day supply (b and d). Corresponding figure: Fig. 4.

Fig. S10. Predicted mean satisfaction ratio and its range (10th-90th) in Network 2 with a flow-restricted method ignoring filling (FR) and including filling (SWMM-FR, and a volume-restricted method ignoring filling (VR) and including filling (SWMM-VR) under a 4 hours/day supply (a and c) a 12 hours/day supply (b and d). Corresponding figure: Fig. 4.

References

- Abdy Sayyed, M. A. H., R. Gupta, and T. T. Tanyimboh. 2015. "Noniterative Application of EPANET for Pressure Dependent Modelling Of Water Distribution Systems." *Water Resources Management*, 29 (9): 3227–3242. Kluwer Academic Publishers. https://doi.org/10.1007/s11269-015-0992-0.
- Ameyaw, E. E., F. A. Memon, and J. Bicik. 2013. "Improving equity in intermittent water supply systems." *Journal of Water Supply: Research and Technology - AQUA*, 62 (8): 552–562. https://doi.org/10.2166/aqua.2013.065.
- Ang, W. K., and P. W. Jowitt. 2006. "Solution for Water Distribution Systems under Pressure-Deficient Conditions." J Water Resour Plan Manag, 132 (3): 175–182. https://doi.org/10.1061/(ASCE)0733-9496(2006)132:3(175).
- Batish, R. 2003. "A New Approach to the Design of Intermittent Water Supply Networks." *World Water & Congress 2003*, 1–11. Reston, VA: American Society of Civil Engineers.
- Batterman, A., and S. Macke. 2001. "A Strategy to Reduce Technical Water Losses for Intermittent Water Supply Systems." Suderberg, Germany: Fachhochschule Nordostniedersachsen.
- Bragalli, C., C. D'Ambrosio, J. Lee, A. Lodi, and P. Toth. 2012. "On the optimal design of water distribution networks: a practical MINLP approach." *Optimization and Engineering*, 13 (2): 219–246. https://doi.org/10.1007/s11081-011-9141-7.
- Cabrera-Bejar, J. A., and V. G. Tzatchkov. 2009. "Inexpensive Modeling of Intermittent Service Water Distribution Networks." *World Environmental and Water Resources Congress 2009*, 1–10. Reston, VA: American Society of Civil Engineers.
- Campisano, A., A. Gullotta, and C. Modica. 2019a. "Modelling private tanks in intermittent water distribution systems by use of EPA-SWMM." *17th International Computing & Control for the Water Industry Conference*. Exeter, UK: University of Exeter.
- Campisano, A., A. Gullotta, and C. Modica. 2019b. "Using EPA-SWMM to simulate intermittent water distribution systems." *Urban Water J*, 15 (10): 925–933. Taylor and Francis Ltd. https://doi.org/10.1080/1573062X.2019.1597379.
- Dubasik, F. 2017. "Planning for Intermittent Water Supply in Small Gravity-Fed Distribution Systems: Case Study in Rural Panama." Master's Thesis. Michigan Technological University.
- Fontanazza, C. M., G. Freni, and G. La Loggia. 2007. "Analysis of intermittent supply systems in water scarcity conditions and evaluation of the resource distribution equity indices." *WIT Transactions on Ecology and the Environment*, 103: 635–644. WITPress. https://doi.org/10.2495/WRM070591.
- Gorev, N. B., and I. F. Kodzhespirova. 2013. "Noniterative Implementation of Pressure-Dependent Demands Using the Hydraulic Analysis Engine of EPANET 2." *Water Resources Management*, 27 (10): 3623–3630. https://doi.org/10.1007/s11269-013-0369-1.
- Gullotta, A., D. Butler, A. Campisano, E. Creaco, R. Farmani, and C. Modica. 2021. "Optimal Location of Valves to Improve Equity in Intermittent Water Distribution Systems." J Water Resour Plan Manag, 147 (5). American Society of Civil Engineers (ASCE). https://doi.org/10.1061/(asce)wr.1943-5452.0001370.
- Ingeduld, P., A. Pradhan, Z. Svitak, and A. Terrai. 2006. "Modelling Intermittent Water Supply Systems with EPANET." 8th Annual Water Distribution Systems Analysis Symposium.

- Jinesh Babu, K. S., and S. Mohan. 2012. "Extended Period Simulation for Pressure-Deficient Water Distribution Network." *Journal of Computing in Civil Engineering*, 26 (4): 498– 505. American Society of Civil Engineers (ASCE). https://doi.org/10.1061/(asce)cp.1943-5487.0000160.
- Kabaasha, A. 2012. "Modelling Unsteady Flow Regimes under Varying Operating Conditions in Water Distribution Networks." MSc Thesis. Delft, The Netherlands: UNESCO-IHE Institute for Water Education.
- Lieb, A. M., C. H. Rycroft, and J. Wilkening. 2016. "Optimizing Intermittent Water Supply in Urban Pipe Distribution Networks." *SIAM J Appl Math*, 76 (4): 1492–1514. https://doi.org/10.1137/15M1038979.
- Mahmoud, H. A., D. Savić, and Z. Kapelan. 2017. "New Pressure-Driven Approach for Modeling Water Distribution Networks." J Water Resour Plan Manag, 143 (8): 04017031. American Society of Civil Engineers (ASCE). https://doi.org/10.1061/(asce)wr.1943-5452.0000781.
- De Marchis, M., C. M. Fontanazza, G. Freni, G. La Loggia, E. Napoli, and V. Notaro. 2010. "A model of the filling process of an intermittent distribution network." *Urban Water J*, 7 (6): 321–333. Taylor and Francis Ltd. https://doi.org/10.1080/1573062X.2010.519776.
- Mohan, S., and G. R. Abhijith. 2020. "Hydraulic Analysis of Intermittent Water-Distribution Networks Considering Partial-Flow Regimes." J Water Resour Plan Manag, 146 (8): 04020071. American Society of Civil Engineers (ASCE). https://doi.org/10.1061/(asce)wr.1943-5452.0001246.
- Mohapatra, S., A. Sargaonkar, and P. K. Labhasetwar. 2014. "Distribution Network Assessment using EPANET for Intermittent and Continuous Water Supply." *Water Resources Management*, 28 (11): 3745–3759. https://doi.org/10.1007/s11269-014-0707-y.
- Neelakantan, T. R., and K. Rohini. 2021. "Simplified Pressure-Driven Analysis of Water Distribution Network and Resilience Estimation." *J Water Resour Plan Manag*, 147 (3). https://doi.org/10.1061/(ASCE)WR.1943-5452.0001349.
- Paez, D., C. R. Suribabu, and Y. Filion. 2018. "Method for Extended Period Simulation of Water Distribution Networks with Pressure Driven Demands." Water Resources Management, 32 (8): 2837–2846. Springer Netherlands. https://doi.org/10.1007/s11269-018-1961-1.
- Segura, J. L. A. 2006. "Use of hydroinformatics technologies for real time water quality management and operation of distribution networks. Case study of Villavicencio, Colombia." MSc. UNESCO-IHE Institute for Water Eductation.
- Shrestha, M., and S. G. Buchberger. 2012. "Role of Satellite Water Tanks in Intermittent Water Supply System." *World Environmental and Water Resources Congress 2012*, 944–951. Reston, VA: American Society of Civil Engineers.
- Siew, C., and T. T. Tanyimboh. 2012. "Pressure-Dependent EPANET Extension." *Water Resources Management*, 26 (6): 1477–1498. https://doi.org/10.1007/s11269-011-9968-x.
- Sivakumar, P., N. B. Gorev, T. T. Tanyimboh, I. F. Kodzhespirova, C. R. Suribabu, and T. R. Neelakantan. 2020. "Dynamic Pressure-Dependent Simulation of Water Distribution Networks Considering Volume-Driven Demands Based on Noniterative Application of EPANET 2." J Water Resour Plan Manag, 146 (6): 06020005. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001220.

- Sivakumar, P., and R. K. Prasad. 2014. "Simulation of Water Distribution Network under Pressure-Deficient Condition." *Water Resources Management*, 28 (10): 3271–3290. Kluwer Academic Publishers. https://doi.org/10.1007/s11269-014-0677-0.
- Sivakumar, P., and R. K. Prasad. 2015. "Extended Period Simulation of Pressure-Deficient Networks Using Pressure Reducing Valves." Water Resources Management, 29 (5): 1713–1730. Kluwer Academic Publishers. https://doi.org/10.1007/s11269-014-0907-5.
- Suribabu, C. R., P. Sivakumar, and N. Sivakumar. 2022. "Volume driven analysis for house level water supply assessment in an intermittent water supply system." *ISH Journal of Hydraulic Engineering*. Taylor and Francis Ltd. https://doi.org/10.1080/09715010.2022.2098683.
- Taylor, D. D. J., A. H. Slocum, and A. J. Whittle. 2019. "Demand Satisfaction as a Framework for Understanding Intermittent Water Supply Systems." *Water Resour Res*, 55 (7): 5217–5237. Blackwell Publishing Ltd. https://doi.org/10.1029/2018WR024124.